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1. Introduction

Recently there has been considerable progress in using the AdS/CFT correspondence to

understand quantum gravity, especially in the form of explicit mappings from certain CFT’s

to their dual semi-classical geometries. The first such system was the set of LLM geome-

tries: an explicit map from states of 1
2 -BPS sector of N = 4 SU(N) SYM to their dual

supergravity solutions [1]. This map was further developed and analysed among others

in [2 – 7]. Progress in extending this mapping to the 1
4 - and 1

8 -BPS sectors has been made

in [8 – 12]. Another such map was proposed between the 1
2 -BPS sectors of the D1-D5 black

hole and its dual field theory in [13], and also in [14 – 16]; while similar mappings were

introduced and analysed for the set of Lin-Maldacena geometries in [17, 18]. All of these

mappings lend support to the proposal that gravity is thermodynamic in nature.

In all cases the supergravity analyses were formulated in terms of classical solutions,

but any such mapping must also extend to the quantum level. Such an extension for the
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LLM system was proposed in [4], and in this note we apply the methods developed in that

paper to the D1-D5 system.

We propose a ‘metric’ operator in the CFT: an operator whose eigenstates are dual

to semi-classical geometries via the mapping given in [13]. The states that fail to be

eigenstates, however, cannot be mapped to spacetimes with unique metrics.

We also analyse how the data characterising the field theory state shows up in the

asymptotic form of the spacetime metric. We find the data to be arranged into a set of

multipoles, the first of which was already considered in [13, 19] as the dipole operator. We

also find that certain terms in the metric only show up if the CFT dual state is a superpo-

sition of basis states, and demonstrate the measurability of these interference effects. Both

of these results are highly analogous to what was found for the LLM geometries in [3, 4].

Finally, we point out that the thermal ensemble, consisting of a sum over all states

with the total twist N fixed using a lagrange multiplier β, is not an eigenstate of the

metric operator due to the large fluctuations inherent in the ensemble. This is again highly

analogous to what was found for the LLM case in [6], but we show that the method used

there to restrict the ensemble is incapable of sufficiently constraining the ensemble in the

D1-D5 case.

The paper is structured as follows. In section 2 we present a brief review of the D1-D5

system and the map proposed in [13]. In section 3 we construct the asymptotic expansion

of the metric and find a set of multipoles. In section 4 we proceed to use these multipoles

to motivate our definition of the metric operator, and define the approximate eigenstates of

this operator. In section 5 we consider a more general asymptotic expansion of the metric

and find the terms due to interference between basis states. In section 6 we consider the

thermal ensemble, and we conclude in section 7 with some comments.

2. Review

We begin by briefly reviewing the D1-D5 system; for a more comprehensive review the

reader is referred to [20 – 26]. The D1-D5 CFT, which is dual to type IIB string theory on

AdS3 × S3 ×T4, is a marginal deformation of the (1+ 1)-dimensional orbifold sigma model

with target space

M0 =
(

T4
)N

/SN , (2.1)

where N is related to the AdS scale and SN is the permutation group. This duality arises

as the decoupling limit of type IIB string theory on M1,4 × S1 × T4 with N1 D1-branes

wrapping the S1 and N5 D5-branes wrapping S1 × T4, where the parameters are related

by N = N1N5.

Gravity solutions: the microstate geometries of the D1-D5 system are well known and

can be written as

ds2 =
1√
f1f5

[−(dt + A)2 + (dy + B)2] +
√

f1f5d~x2 +

√

f1

f5
d~z2, (2.2)

e2Φ =
f1

f5
, (2.3)
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C =
1

f1
(dt + A) ∧ (dy + B) + C, (2.4)

dB = ∗4dA, (2.5)

dC = − ∗4 df5, (2.6)

f5 = 1 +
Q5

L

∫ L

0

ds

|~x − ~F (s)|2
, (2.7)

f1 = 1 +
Q5

L

∫ L

0

|~F ′(s)|2ds

|~x − ~F (s)|2
, (2.8)

Ai =
Q5

L

∫ L

0

F ′
i (s)ds

|~x − ~F (s)|2
. (2.9)

Here y and ~z parametrize the S1 and T4 respectively. The coordinate radius of the S1 is

R, while the coordinate volume of the T4 is V4. The charges Q1 and Q5 are related to N1

and N5 by

Q5 = gsN5, Q1 =
gs

V4
N1. (2.10)

All these solutions are parametrized in terms of a closed curve ~F (s) in R
4, which we

expand as a Fourier series as

~F (s) = µ
∞
∑

k=−∞
k 6=0

1
√

2|k|
~dke

i 2πk
L

s, (2.11)

where s ranges from 0 to L and ~dk = (d1
k, d2

k, d
3
k, d

4
k) = ~d∗−k. Note that the fermionic

oscillations as well as oscillations on the T4 have been omitted, as we are only interested

in fluctuations in the R
4. Additionally,

µ =
gs

R
√

V4
. (2.12)

The parameter L satisfies

LR = 2πQ5, (2.13)

and due to fixed length of the original string there is an additional constraint

Q1 =
Q5

L

∫ L

0
|~F ′(s)|2ds. (2.14)

It was shown in [27] that the space of classical solutions can be quantized to yield a

finite number of quantum states. The quantized system is given by1

[

da
k, d

b
l

]

= δabδkl, (2.15)

〈
∫ L

0
: |~F ′(s)|2 : ds〉 =

(2π)2µ2N

L
, (2.16)

N = N1N5 =
∞
∑

k=1

k〈~d †
k · ~dk〉. (2.17)

1This is the only time we use ~dk’s as operators. Our notation is such that dk’s are complex numbers,

while ck, c
†
k denote annihilation and creation operators.
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Field theory states: the Ramond ground states of the CFT are in one to one corre-

spondence with states at level N of a Fock space of a system composed of 8 bosonic and 8

fermionic oscillators. We shall retain only four of these oscillators; the bosonic ones that

correspond to fluctuations in the transverse R
4. Thus a basis for the states can be written

as

|{Nk}〉 =

∞
∏

k=1

4
∏

a=1

1
√

Na
k !

(

ca†
k

)Na
k |0〉, with

∞
∑

k=1

4
∑

a=1

kNa
k = N. (2.18)

For convenience we shall write ~c †
k ≡ ~c−k for positive k, so that the notation ~c includes both

the creation and annihilation operators. It was proposed in [13] to associate a phase space

density f(~d) to each state |ψ〉 by

fψ(~d) =
〈0|e

P∞
k=1

~dk·~ck |ψ〉〈ψ|e
P∞

k=1
~d∗k·~c

†
k |0〉

〈0|e
P∞

k=1
~dk·~cke

P∞
k=1

~d∗k·~c
†
k |0〉

. (2.19)

It can be shown that this distribution function corresponds to anti-normal ordering pre-

scription in the quantum system, and can be used to compute expectation values of anti-

normal ordered operators as

∫

~d
fψ(~d) g(~d) = 〈ψ| : g(~c) :A |ψ〉. (2.20)

Also, the distribution corresponding to the basis state (2.18) can be easily computed and

gives

f{Na
k }(

~d) =
∞
∏

k=1

4
∏

a=1

e−da
kda

−k

(

da
kd

a
−k

)Na
k

Na
k !

. (2.21)

In addition to this basis, we will often find it useful to work with coherent states.

These can be defined as

|{ ~̃
d}〉 = e−

~̃
dk·

~̃
d∗k

2 PNe
~̃d∗k ·~c

†
k |0〉, (2.22)

where
~̃
dk ∈ C

4 for all k, and PN is a projection operator to the twist N subspace of the

Fock space. Note that we are suppressing the sums over k in the exponents, and that this

definition differs from the definition in [13] by a normalization factor. With this definition

one finds the corresponding distribution to be

f ~̃
d
(~d) =

∞
∏

k=1

e−|~dk− ~̃
dk|2 + O(

1

N
), (2.23)

where the subleading correction arises because of the projection operator PN , and will

vanish in the N → ∞ limit.
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Using this distribution, it was proposed in [13] that the microstate geometry dual to

state |Ψ〉 should be given by

f5 = 1 +
Q5

L
N

∫

~d

∫ L

0

fΨ(~d) ds

|~x − ~F (s)|2
, (2.24)

f1 = 1 +
Q5

L
N

∫

~d

∫ L

0

fΨ(~d) |~F ′(s)|2ds

|~x − ~F (s)|2
, (2.25)

Ai =
Q5

L
N

∫

~d

∫ L

0

fΨ(~d)F ′
i (s)ds

|~x − ~F (s)|2
, (2.26)

where the normalization factor is

N−1 =

∫

~d
fΨ(~d). (2.27)

This is a mapping from a quantum system to a set of semiclassical geometries, and we

shall see in section 4 that it shouldn’t be applied to an arbitrary state, or more generally

to an arbitrary density matrix, as this may yield unphysical spacetimes. In section 4

we propose a metric operator in the CFT, the eigenstates of which can be associated to

microstate geometries using the prescription above.

3. Asymptotic expansion of a basis state

We wish to determine how the microstate geometry (2.24), (2.25), (2.26) corresponding

to a given basis state (2.18) appears to an asymptotic observer. To accomplish this, we

shall expand f5, given by (2.24), as a power series in the inverse radial coordinate 1
r . For

completeness, we also compute the expansion of f1 in appendix B. For r ≫ |~F (s)| we can

expand

|~x − ~F (s)|−2 = r−2

(

1 − 2~r · ~F (s) − |~F (s)|2
r2

)−1

=
1

r2

∞
∑

n=0

(

2~r · ~F (s) − |~F (s)|2
r2

)n

. (3.1)

Plugging this into (2.24) and expanding the binomial we get

f5 = 1 +
Q5

L
N 1

r2

∞
∑

n=0

1

r2n

n
∑

p=0

(

n

p

)

(−1)p2n−prn−p

∫ L

0

∫

~d
f(~d)(~e · ~F (s))n−p|~F (s)|2p, (3.2)

where ~r ≡ r~e and |~e|2 = 1. To make the powers of 1
r more explicit, we define a new

summation index l ≡ n+p, which runs from 0 to infinity. Eliminating n, we see that p now

runs from 0 to
[

l
2

]

. To make the integral more explicit, we also eliminate ~F (s) using (2.11)

. This gives

f5 = 1 +
Q5

r2

∞
∑

l=0

(µ

r

)l
[ l
2 ]

∑

p=0

(−1)p2
l
2
−2p

(

l − p

p

)

∑

k1,...,kp
l1,...,lp

m1,...,ml−2p

δ(
∑

i(ki + li) +
∑

j mj)
√

|∏i kili
∏

j mj |
·

· N
∫

~d

∞
∏

s=1

4
∏

a=1

e−da
s da∗

s (da
sd

a∗
s )Na

s

p
∏

i=1

(

~dki
· ~dli

)

l−2p
∏

j=1

(

~e · ~dmj

)

, (3.3)
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where the integral over s gave rise to the Kronecker delta. The integral can only be non-zero

when the number of ~d’s is even, so we can write l ≡ 2n, which gives

f5 = 1 +
Q5

r2

∞
∑

n=0

(µ

r

)2n
n

∑

p=0

(−1)p2n−2p

(

2n − p

p

)

∑

k1,...,kp
l1,...,lp

m1,...,m2(n−p)

δ(
∑

i(ki + li) +
∑

j mj)
√

|∏i kili
∏

j mj|
·

· N
∫

~d

∞
∏

s=1

4
∏

a=1

e−da
s da∗

s (da
sd

a∗
s )Na

s

p
∏

i=1

(

~dki
· ~dli

)

2(n−p)
∏

j=1

(

~e · ~dmj

)

. (3.4)

In the above all the remaining integrals are gaussian. However, the combinatorics of the

indices ki, li and mj quickly become untractable and we have been unable to find a closed

form expression for the nth level of the expansion. In appendix A we present a procedure

that can in principle be used compute any given order, though it quickly becomes very

tedious for higher orders.

Lacking a general closed form for the expansion, we can at least compute the first few

nontrivial orders. For simplicity, we also take the occupation numbers to be independent

of direction in the R
4, i.e. Na

k = Nk. As shown in the appendix, we get

f5 = 1 +
Q5

r2
− 12

Q5µ
4

r6
M2 + 40

Q5µ
6

r8
M3 + O(

1

r10
), (3.5)

where we have defined the multipoles

Mk =

∞
∑

m=1

(Nm)k

mk
. (3.6)

As argued in the appendix, the multipole Mk will first appear in the coefficient of 1
r2k+2 in

the expansion. The measurability of these higher order terms depends on how they scale

as N is taken to infinity. The average occupation numbers are given by Bose-Einstein

statistics, a fact we shall show in section 6; for now we just take this as a given and find

〈Mk〉 =
∞
∑

m=1

1

mk

1

(eβm − 1)k
≈

∞
∑

m=1

1

m2k

1

βk
∼ N

k
2 , (3.7)

where the inverse temperature scales as β ∝ N− 1
2 . We also know that r ∝ N

1
4 and

Q5 ∝
√

N , from which it follows that the combination Q5Mk

r2k+2 is remains finite in the limit

N → ∞, and therefore the higher order terms in the expansion are measurable for an

observer that can make measurements with sufficient precision. Since f5 appears directly

in the metric, an asymptotic observer can measure these multipoles and retrieve some data

about the CFT state.

To be more precise, an asymptotic observer can measure the multipole Mk by mea-

suring the (2k + 2)th derivative of the metric, or a suitable invariant composed of the

derivatives. If such a measurement is made with a machine of finite spatial size λ, the

resolution of the machine must be at least λ/2k. Since any measurement is bounded by

the Planck scale, this gives a condition

λ

2k
> l(6)p , (3.8)
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where the six-dimensional Planck length is defined in terms of the 6D Newton’s constant

and the 6D string coupling as (l
(6)
p )4 = G6 = g2

6 . If the size of the measurement apparatus

is λ = γRAdS3, we get

k .
γRAdS3√

g6
= γ

√
g6N

1
4

√
g6

= γN
1
4 . (3.9)

This gives a limit to how much CFT data an asymptotic observer with sufficient ingenuity

can measure. However, this bound is very likely to be too generous; measuring multipoles

of order k ∼ N
1
4 involves high energies, the backreaction of which on the geometry cannot

be ignored. Thus it is no longer sufficient to work in the 1
2 -BPS sector without taking into

account the α′ and gs corrections, which are likely to impose a tighter bound on how many

multipoles are measurable. In this note we will not attempt to analyse this in more detail.

4. The metric operator

We shall now explain our earlier statement that the map (2.24), (2.25), (2.26) does not

extent to all the states |Ψ〉 in the Hilbert space. Consider a superposition of two very

different states, say

|Ψ〉 =
1√
2
|ψ1〉 +

1√
2
|ψ2〉, (4.1)

with |ψ1〉 =
4

∏

a=1

1
√

(N/4)!

(

ca†
1

)N
4 |0〉, and |ψ2〉 =

4
∏

a=1

ca†
N/4|0〉.

Note that neither of these states is typical in any sense, but they serve to illustrate the

issue; we will deal with the full thermal ensemble of states in section 6. We immediately

find the multipoles Mk in these states as2

Mψ1

k =

(

N

4

)k

, Mψ2

k =
1

(

N
4

)k
. (4.2)

Since (2.19) and (2.24) are linear3 in the density matrix, the multipoles of the state |Ψ〉 are

given by MΨ
k = 1

2(Mψ1

k + Mψ2

k ), which is very different from both Mψ1

k and Mψ2

k . This is

not problematic from the CFT point of view, but the spacetime interpretation presents a

problem. As soon as an observer measures any of the multipoles in the spacetime, standard

measurement theory arguments state that the universe is projected into either of the two

states ψ1 or ψ2. But the three geometries differ from each other at scales which are easily

measurable and therefore ‘jumping’ between these metrics based on one measurement is not

physically acceptable. Because of this problem we need to develop a criterion that estab-

lishes when a state can be mapped into a microstate geometry using (2.24), (2.25), (2.26),

and when it’s not reasonable to associate a semiclassical metric to a state in the CFT.

2Due to the non-typicality, these don’t scale as N
k
2 like they would in a typical state. Indeed, ψ1 has

the maximal possible multipoles, while ψ2 has the smallest possible multipoles.
3The density matrix for Ψ will have cross terms |ψ1〉〈ψ2| and |ψ2〉〈ψ1|. However, we shall show in

section 5 that these will have minimal contribution to the phase space distribution and will not affect the

multipoles. Therefore the distribution is the sum of the distributions of ψ1 and ψ2.
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4.1 The metric operator and eigenstates

We shall now define the general multipole operator4 as

M̂(k) ≡
∞

∑

m=1

1

mk
N̂k

m =

∞
∑

m=1

1

mk

(

c†mcm

)k
, (4.3)

which is simply the quantum version of (3.6). Note that we are suppressing the R
4 indices.

Next we need to define what we mean by approximate eigenstates of the operator M̂(k).

From the definition it is clear that the only exact eigenstates are the basis states (2.18),

while any superposition is necessarily not an eigenstate. This is too restricting; rather we

wish to introduce a coarse graining to correspond to the limited measurement precision of

an observer. To do this, for an arbitrary state |Ψ〉 we introduce the functional

E[M(k)] = Tr

[

ρ̂Ψ

(

M̂(k) − M(k)
)2

]

, (4.4)

and we shall call the function that minimizes this functional MΨ(k). Thus armed, we say

that |Ψ〉 is an eigenstate of M̂(k) with eigenvalue function MΨ(k) and accuracies {ǫk}, iff
√

E[MΨ(k)]

MΨ(k)
< ǫk, for all k. (4.5)

Note that if |Ψ〉 = |{Nk}〉 is a basis state, then E[MΨ(k)] = 0, with MΨ(k) given by (3.6),

and (4.5) is trivially satisfied.

With this definition, we are finally in a position to state our proposal in a definite

form:

The states in the CFT that have good dual description in terms of a unique metric are

the ones that are approximate eigenstates of the operator M̂(k).

In this sense we can also call M̂(k) a ‘metric’ operator: its eigenstates are the only ones

that can be mapped to semi-classical spacetimes with unique metrics, and its eigenvalue

functions specify the multipoles present in the asymptotic expansion of the metric and

allow an observer to reconstruct the metric up to some measurement precision.

4.2 Explicit example

Before closing this section, we wish to illustrate this formalism by considering an

explicit example. We choose the state to be a superposition of two basis states:

|Ψ〉 = 1√
2
(|{Nm1}〉 + |{Nm2}〉). The expectation values in (4.4) are easily evaluated and

yield

〈Ψ|M̂(k)|Ψ〉 =
1

2

( ∞
∑

m=1

Nk
m1

mk
+

∞
∑

m=1

Nk
m2

mk

)

, (4.6)

〈Ψ|M̂ (k)2|Ψ〉 =

∞
∑

m,n=1

1

mknk
〈Ψ|N̂k

mN̂k
n |Ψ〉 =

1

2





( ∞
∑

m=1

Nk
m1

mk

)2

+

( ∞
∑

m=1

Nk
m2

mk

)2


 .

4The idea of using a formalism like this to determine which states can be mapped to unique semiclassical

geometries was first used in the setting of 1
2
-BPS sector of N = 4 SU(N) Yang-Mills in [4].
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Plugging these into the functional (4.5), we can write it as

E[M(k)] =

(

M(k) − 1

2

∞
∑

m=1

Nk
m1 + Nk

m2

mk

)2

+
1

4

( ∞
∑

m=1

Nk
m1

mk
−

∞
∑

m=1

Nk
m2

mk

)2

. (4.7)

This is minimized by choosing MΨ(k) = 1
2

∑ Nk
m1+Nk

m2

mk = 1
2(Mk,{Nm1} + Mk,{Nm2}), i.e.

average of the multipoles of the two states. However, the functional never vanishes and the

condition (4.5) can be written as

|Mk,{Nm1} − Mk,{Nm1}|
Mk,{Nm1} + Mk,{Nm2}

< ǫk, (4.8)

which gives a condition for how much the multipoles of the two states can differ if |Ψ〉 is

to be an eigenstate with accuracy ǫk. For the superposition considered at the beginning of

this section, (4.1), the ratio above is of order one, and therefore this state is far from being

an eigenstate.

5. More asymptotic expansions

We now wish to find the asymptotic expansion for a general state in the theory, rather than

just for basis states. Of course, for any state we need to check that it is an approximate

eigenstate of M̂ (k) before we can trust this expansion. A general superposition is given by

|ψ〉 =
∑

w

αw

∞
∏

k=1

4
∏

a=1

(

ca†
k

)Na,w
k

√

Na,w
k !

|0〉,with

∞
∑

k=1

4
∑

a=1

kNa,w
k = N ∀w, and

∑

w

|αw|2 = 1,

(5.1)

where w indexes the states in the superposition. The phase space distribution can again

be computed, and yields

f(~d) =
∑

w,w′

αwα∗
w′

∞
∏

k=1

4
∏

a=1

e−da
kda∗

k (da
k)

Na,w
k (da∗

k )N
a,w′

k (5.2)

=
∑

w,w′

αwα∗
w′

∞
∏

k=1

4
∏

a=1

e−(ρa
k)2(ρa

k)
(Na,w

k +Na,w′

k )eiφa
k(Na,w

k −Na,w′

k ),

where in the second equality we have switched to polar coordinates. Thus we can see that

all angular dependence in the phase space distribution is due to interference terms between

different basis states. Following the recipe laid out in section 3, we can expand f5 in 1
r to

get

f5 = 1 +
Q5

r2

∑

w,w′

αwα∗
w′

∞
∑

l=0

(µ

r

)l
[ l
2 ]

∑

p=0

(−1)p2
l
2
−2p

(

l − p

p

)

∑

k1,...,kp
l1,...,lp

m1,...,ml−2p

δ(
∑

i(ki + li) +
∑

j mj)
√

|∏i kili
∏

j mj|
·

· N
∫

~d

∞
∏

k=1

4
∏

a=1

e−da
kda∗

k (da
k)

Na,w
k (da∗

k )N
a,w′

k

p
∏

i=1

(

~dki
· ~dli

)

l−2p
∏

j=1

(

~e · ~dmj

)

. (5.3)
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Though analyzing this in detail is untractable, we can still make some interesting observa-

tions. Since all the terms in the phase space distribution (5.2) do not in general have an

even number of d’s, we see that the summation index l does not need to be even anymore,

and thus the expansion now has terms that are odd in 1
r . The origin of these terms is

completely due to interference between basis states.

5.1 Expansion for coherent states

Analyzing the measurability of the odd terms in (5.3) is difficult when working in the basis

of eigenstates of excitation numbers. However, using coherent states we can explicitly

show that these terms can be measurable. The phase space distribution corresponding to

a coherent state was written down in (2.22), and using it we can once again expand (2.24)

to get

f5 = 1 +
Q5

r2
+ 4

Q5µ
2

r4

∞
∑

m=1

1

m

[

( ~̃dm · ~e)( ~̃d−m · ~e) − ( ~̃dm · ~̃d−m)
]

+ (5.4)

+
√

2
Q5µ

3

r5

∑

k,l,m

δ(k + l + m)
√

|klm|
[

2(
~̃
dm · ~e)( ~̃dk · ~e)( ~̃dl · ~e) − (

~̃
dk · ~̃

dl)(~e · ~̃
dm)

]

+ O
(

1

r6

)

.

To complete the analysis, we need to show that these odd terms are measurable and that

coherent states are approximate eigenstates of M̂(k) and therefore it is sensible to associate

semiclassical geometries to them.

Measurability: we need to determine how the ~̃d’s scale as a function of N . To do this,

we compute the overlap between the coherent state and an arbitrary basis state. This can

be done using (2.18) and (2.22), and gives

〈{Nk}| ~̃d〉 =
∞
∏

k=1

e−
|dk|2

2
(d∗k)

Nk

√
Nk!

. (5.5)

To determine which basis state has the largest overlap with the coherent state, we maximize

the norm of (5.5) and find

| ~̃dk| =
√

Nk. (5.6)

We want the N → ∞ limit to be one that leaves inner products like (5.5) unchanged;

hence (5.6) tells us the scaling of ~̃dk. For states near the typical state, Nk ∝
√

N for small

k, and therefore we see that the terms in the expansion remain fixed as N is scaled5. This

is enough to show that the effects of interference remain observable, even in the N → ∞
limit.

Eigenstates: finally, we need to show that the coherent states are approximate eigen-

states of M̂(k). The expectation values of M̂(k) and M̂(k)2 are

Tr(ρ̂M̂(k)) =
∞
∑

m=1

1

mk

∑

{Np}
|〈{Np}| ~̃d〉|2〈{Np}|Nk

m|{Np}〉

5Remember that r scales as N1/4 and Q5 as
√

N
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=

∞
∑

m=1

1

mk
e−|dm|2

∞
∑

Nm=0

|dm|2Nm

Nm!
(Nm)k, (5.7)

Tr(ρ̂M̂(k)2) =
∞
∑

m,n=1

1

mknk

∑

{Np}
|〈{Np}| ~̃d〉|2〈{Np}|Nk

mNk
n |{Np}〉

=

( ∞
∑

m=1

e−|dm|2

mk

∞
∑

Nm=0

|dm|2Nm

Nm!
Nk

m

)2

+

+

∞
∑

m=1

e−|dm|2

m2k

∞
∑

Nm=0

|dm|2Nm

Nm!
N2k

m −
∞
∑

m=1

e−2|dm|2

m2k

( ∞
∑

Nm=0

|dm|2Nm

Nm!
Nk

m

)2

.(5.8)

Using these, one shows that the functional E[M(k)] in (4.4) can be written as

Tr(ρ̂(M̂(k) − M(k))2) =

(

M(k) −
∞

∑

m=1

1

mk
e−|dm|2

∞
∑

n=0

|dm|2n

n!
nk

)2

+

+
∞
∑

m=1

e−|dm|2

m2k





∞
∑

n=0

|dm|2n

n!
n2k − e−|dm|2

( ∞
∑

n=0

|dm|2n

n!
nk

)2


 .(5.9)

The function Md̃(k) is again chosen such that the first square vanishes. Thus it remains

to show that the remaining terms yield a negligible contribution. To do this, we note that

the sums appearing in the the expression above can be computed as

e−r
∞
∑

n=0

rn

n!
nk = e−r(r∂r)

k
∞

∑

n=0

rn

n!
= e−r(r∂r)

ker = Polynomial of order k in r. (5.10)

Using this and writing |dm|2 = rm, we can write the ratio (4.5) as

√

E[Md̃(k)]

Md̃(k)
=

√

∑∞
m=1

e−rm

m2k

[

∑∞
n=0

rn
m
n! n

2k − e−rm

(

∑∞
n=0

rn
m
n! n

k
)2

]

∑∞
m=1

1
mk e−rm

∑∞
n=0

rn
m
n! n

k
. (5.11)

The denominator is a polynomial of order k in rm, while in the numerator the highest

order in rm cancels and one is left with a square root of a polynomial of order 2k − 1 in

rm. Using the scaling (5.6) we then see

√

E[Md̃(k)]

Md̃(k)
∼

√

|dm|4k−2

|dm|2k
∼ 1

|dm| ∼
1

N
1
4

, (5.12)

showing that for large N this is suppressed and the coherent state is an approximate

eigenstate to a high precision.

6. The canonical ensemble

Explicit computations in the microcanonical ensemble involving only states of a fixed

total twist N can be complicated. One often used method of circumventing this is to
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work in a canonical ensemble, fixing the total twist to equal N using a Lagrange mul-

tiplier. However, we shall show that this ensemble is not well suited for use with the

mapping (2.24), (2.25), (2.26), and this is possibly the reason why in [13] a non-standard

entropy was found for the M = 0 BTZ black hole.

In the canonical ensemble the thermal density matrix can be written as

ρ̂ =
∑

{Nk}

e−βN̂ |{Nk}〉〈{Nk}|
Tr(e−βN̂ )

=

∞
∏

k=1

(1 − e−βk)

∞
∑

Nk=0

e−βkNk |k,Nk〉〈k,Nk|, (6.1)

where |k,Nk〉 = 1√
Nk !

(c†k)
Nk |0〉, and β has to be fixed by the condition 〈N̂〉 = N . Note

that we’re treating all directions as isotropic, and thus suppressing the R
4 index a. The

expected occupation numbers and total twist were computed in [13] to give

〈N̂m〉 = Tr(ρ̂N̂m) = (1 − e−βm)
∞
∑

Nm=0

Nme−βmNm =
1

eβm − 1
, (6.2)

〈N̂〉 =

∞
∑

m=1

m〈N̂m〉 =
2π2

3β2
. (6.3)

The second equation fixes the inverse temperature

β = π

√

2

3N
. (6.4)

In addition to these we will need the expectation values of higher powers of the occupation

numbers. For βm ≪ 1, we can find them by approximating the sum by an integral, which

yields

〈N̂k
m〉 = (1 − e−βk)

∞
∑

Nm=0

Nk
me−βmNm ≈ (1 − e−βk)

∫ ∞

0
dNmNk

me−βmNm ≈ k!

βkmk
. (6.5)

6.1 Limitations of the canonical ensemble

There is a problem with using the canonical ensemble with the CFT-to-gravity map-

ping (2.24), (2.25), (2.26), as can be seen by computing the standard deviation to mean

ratio of the occupation numbers6:

σ(N̂k)

〈N̂k〉
=

√

〈N̂2
k 〉 − 〈N̂k〉2

〈N̂k〉
= e

βk
2 . (6.6)

This doesn’t vanish in the N → ∞ limit, and is an indication that the fluctuations in

the occupation numbers are always large. This doesn’t invalidate the ensemble as such,

since one can show that the fluctuations in the total twist 〈N̂ 〉 are of the order N− 1
4 and

therefore the ensemble samples only states of twist N to a good degree. However, in using

6This looks different from what (6.5) would give, as this is an exact result. To leading order (6.5) will

give the same result.
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the CFT-to-gravity mapping the fluctuations in N̂k’s are of paramount importance, as

they lead to large fluctuations in the multipoles M̂k, which in turn lead to superpositions

of states of very different metrics, as in the example at the beginning of section 4. Thus,

this thermal state should not be mapped to a geometry at all. Indeed, we can check that

this density matrix does not satisfy (4.5) and therefore does not pass our criterion. We can

use (6.5) to compute the expectation value of M̂(k);

Tr(ρ̂M̂(k)) =
∞

∑

m=1

1

mk
Tr(ρ̂N̂k

m) =
∞
∑

m=1

〈Nk
m〉

mk
≈

∞
∑

m=1

k!

βkm2k
=

k!ζ(2k)

βk
, (6.7)

and the expectation value of the square

Tr(ρ̂M̂(k)2) =

∞
∑

m,n=1

1

mknk
〈N̂k

mN̂k
n〉 ≈

∞
∑

m,n=1

m6=n

k!2

β2km2kn2k
+

∞
∑

m=1

(2k)!

β2km4k
(6.8)

=

( ∞
∑

m=1

k!

βkm2k

)2

+

∞
∑

m=1

(2k)! − k!2

β2km4k
=

(

k!ζ(2k)

βk

)2

+
(2k)! − k!2

β2k
ζ(4k).

Putting these two results together we can again compute functional (4.4):

E[M(k)] =

(

M(k) − k!ζ(2k)

βk

)2

+
(2k)! − k!2

β2k
ζ(4k), (6.9)

which is minimized by choosing Mρ̂(k) = k!ζ(2k)
βk . However, the second term will not vanish,

and moreover is not small by any criterion as can be seen by computing the ratio in (4.5):

√

E[Mρ̂(k)]

Mρ̂(k)
≈

√

(2k)!

k!2
− 1 > 1, (6.10)

which is greater than any reasonable measurement precision ǫk. Thus the mixed thermal

state is not an approximate eigenstate of M̂(k) and should not be associated to any semi-

classical geometry.

6.2 A restricted canonical ensemble?

Due to the limitations stated above, we would like to in some way restrict the canonical

ensemble in order to curb down the fluctuations in the multipoles. The most obvious way

of doing this would be to fix the first p excitation numbers N1, . . . , Np to be given by

the Bose-Einstein excitation numbers (6.11), either by hand or using Lagrange multipliers.

This would be in close analogy with what was found in the LLM case in [6], where one

had to restrict the ensemble by fixing the highest excitation in the system to curb the

fluctuations in the ensemble. We shall explore this and other similarities with the LLM

case in the discussion section. Unfortunately, in our case this method fails to sufficiently

stabilize the ensemble, though we feel it is still interesting to present the analysis and

investigate why this is so.

Thus we begin by fixing

Nm ≡ N (m)
c =

1

eβm − 1
, (6.11)
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so that the the density matrix reduces to

ρ̂ = |1, N (1)
c 〉〈1, N (1)

c |⊗. . .⊗|p,N (p)
c 〉〈p,N (p)

c |⊗
( ∞

∏

k=p+1

(1−e−βk)

∞
∑

Nk=0

e−βkNk |k,Nk〉〈k,Nk|
)

.

(6.12)

Using this density matrix it is clear that the first p excitation numbers do not fluctuate at

all, and the fluctuations of the higher Nm’s are as in the unrestricted ensemble. Using the

results from the previous subsection it is easy to compute the functional (4.4), which gives

E[M(k)] =



M(k) −





p
∑

m=1

(N
(m)
c )k

mk
+

∞
∑

m=p+1

k!

βkm2k









2

+
∞

∑

m=p+1

(2k)! − k!2

β2km4k
. (6.13)

Choosing M(k) to minimize the first square, we can compute the ratio

√

E[Mρ̂(k)]

Mρ̂(k)
≈

√

[(2k)! − k!2]ζp+1(4k)

ζ(2k) + (k! − 1)ζp+1(2k)
, (6.14)

where we defined the partial zeta function as ζp+1(k) =
∑∞

m=p+1 m−k. We may estimate

ζp+1(k) from below by
∫ ∞
p+1

dm
mk and from above by

∫ ∞
p

dm
mk , from which we find

1

k − 1

1

(p + 1)k−1
< ζp+1(k) <

1

k − 1

1

pk−1
. (6.15)

For small values of k (6.14) does not depend on N , and the fluctuations are small with

a suitably chosen p. To see this, we estimate

(

√

E[Mρ̂(k)]

Mρ̂(k)

)2

< [(2k)! − k!2]ζp+1(4k) .
(2k)! − k!2

(4k − 1)p4k−1
< ǫ2

k, (6.16)

which can always be made smaller than the given measurement precision ǫk with a suitably

chosen p, without p having to scale with N .

The trouble arises for large values of k, i.e. k ∝ Nα, as an observer can optimally

measure multipoles up to k ∼ N1/4. Using (6.15) it can be shown that for the fluctuations

to be small, one needs to choose p ≫ k; a value so high that almost all the states are

projected out of the ensemble, invalidating the statistical treatment of the system.

We have been unable to find a better method of stabilising the multipoles in the

canonical ensemble, as the fluctuations in the excitation numbers are quite severe. However,

one possible resolution to this problem might be that, although naively an observer is able

to measure multipoles up to order k ∼ N1/4, this might not hold after a more thorough

analysis. The reason for this is that when an observer measures high multipoles, high

energies are needed and the backreaction of these should not be neglected. Also, for low

energies it is safe to work within the 1
2 -BPS sector, but for large energies one expects gs and

α′ corrections, which might induce a much stricter limit than k ∼ N1/4 for the measurable

multipoles. If this was the case, the method of restricting the fluctuations described here

could be enough to stabilise the ensemble sufficiently; a possibility we shall not analyse in

more detail in this note.
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7. Discussion

In this note we proposed a criterion that a Ramond ground state in the D1-D5 CFT has

to satisfy in order to have a semi-classical gravity dual. This proposal was based on the

observation that the data characterizing the CFT state manifests itself as a set of multipoles

in the gravity side. Thus any CFT state having a semi-classical gravity dual has to be such

that the multipoles associated to it do not have a large quantum variance. In particular,

we showed that the density matrix associated to the canonical ensemble is not ‘sufficiently

classical’ to admit a semi-classical description, and analysed a possible way of modifying

the ensemble to curb these fluctuations.

Furthermore we showed that while our criterion restricts the states that can have semi-

classical duals, certain purely quantum mechanical aspects can be manifest in the semi-

classical gravity dual. An example of this is the observation that quantum interference

in the CFT can give rise to new, measurable, terms in the asymptotic expansion of the

metric.

Comparison with LLM: since the story proposed in this note closely parallels the one

developed in [3, 4, 6] for the LLM system, it is interesting to analyse the similarities and

differences in these systems.

In both cases the relevant states in the CFT’s can be described in terms of excitations

in a harmonic potential; only in the LLM case the excitations are fermionic. Thus a

basis state is specified by an ordered set of excitation numbers: λ1 < . . . < λN , and

in [3] we showed that in the expansion of the metric these integers appear in moments

MLLM
k = λk

1 + . . . + λk
N , which should be compared with the multipoles (3.6) found here.

Thus in the LLM case it is the highest excitations that contribute the most, while in

our case the lowest twists are most strongly manifest in the gravity side. This difference

is presumably due to the fractionalization present in the D1-D5 system. In both cases,

however, the CFT data is arranged into a set of moments/multipoles in the gravity side.

This analogy extends to superpositions; in both cases interference terms can be measurable

for an asymptotic observer, and some terms in the metric expansion only appear for states

that are superpositions of occupation number eigenstates.

Another similarity between the two systems is apparent in the treatment of the canon-

ical ensemble. In the LLM case it was found that states with a few highly excited particles,

though few in number, contributed disproportionably to the ensemble. Therefore the en-

semble was modified by fixing the highest excitation to be a given number Nc [6], and

the fluctuations in this modified ensemble were sufficiently constrained to yield the cor-

rect stretched horizon for the superstar geometry of [28]. In our case, we found that the

fluctuations in the first excitation numbers rendered the ensemble ill-suited for use with

the CFT-to-gravity mapping, and tried to solve this by fixing the first excitation num-

bers7. Unfortunately, we found that to stabilise the high multipoles, one has to fix so

many excitations that one loses the statistical description of the system.

7The fact that in the LLM case it was sufficient to fix only one excitation can be traced back to the fact

that the excitations are ordered, and thus fixing the highest will also affect the others.
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One final difference between the two systems is that, owing to the fact that in LLM

one has a two dimensional phase space and fermionic excitations, in LLM one can compute

the entropy of any spacetime geometry in a very elegant manner. It is not clear if this can

be done in our case, though it would be very interesting if it could be done.
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A. Combinatorics

In this appendix we’ll provide a prescription for computing an arbitrary order of the integral

in (3.4). Thus we need to compute

n
∑

p=0

(−1)p2n−2p

(

2n − p

p

)

∑

k1,...,kp
l1,...,lp

m1,...,m2(n−p)

δ(
∑

i(ki + li) +
∑

j mj)
√

|∏i kili
∏

j mj|
· I{Na

s } × (A.1)

×





p
∏

i=1

(

~dki
· ~dli

)

2(n−p)
∏

j=1

(

~e · ~dmj

)



 ,

where we have defined the functional integral

I{Na
s }[g(~d)] ≡ N

∫

~d

∞
∏

s=1

4
∏

a=1

e−da
sda∗

s (da
sd

a∗
s )N

a
s g(~d). (A.2)

A basic property of I{Na
s } is that it factorizes in s and a, and we can compute8

I
[

(da
kd

a
−k)

r
]

=
1

πNa
k !

∫

da
k,da∗

k

e−da
kda∗

k (da
kd

a∗
k )N

a
k +r = Na

k (Na
k + 1) . . . (Na

k + r − 1) = (Na
k )r,

(A.3)

where (x)n is the Pochhammer symbol.

General method: we see that the integral we need to compute is simply a product of

gaussian integrals, made complicated by the combinatorics of the indices. The integral

clearly can be non-zero only when for every index q there is corresponding index −q, i.e.

the 2n indices {ki, li,mj} are split into pairs and there are thus only n free indices. Let us

first treat the case where no two pairs share the same value |q|. Thus the set of indices is

{q1, . . . , qN ,−q1, . . . ,−qN}. The number of times each of these terms appears in the sums

8Actually, the computation gives (Na
k + 1)r, but to properly account for the anti-normal ordering pre-

scription we need to translate da
kda∗

k → da
kda∗

k − 1, after which we get (Na
k )r. See [13] for more details.
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Figure 1: Graphical method for writing the argument of the functional integral. Portrayed is the

n = 5, p = 3 case and one possible pairing.)

over {ki, li,mj} is 2n!, since k1 can be any of the ±qi, k2 has 2n − 1 options and so on.

However, this would completely fix the ordering of the indices, which we do not want to

do; we divide by n!, so that q1, . . . , qN are unordered. Thus, we should always have a total

of (2n)!
n! terms with all the qi different.

Next we need to address how the pairings are distributed among the indices {ki, li,mj}.
All distributions are clearly not equal, as can be seen from the argument of the functional

integral in (A.1). The clearest way of keeping track of all possibilities is a graphical repre-

sentation, and in figure 1 we have illustrate the n = 5, p = 3 case. In the figure each solid

circle corresponds to a d and each empty circle corresponds to an e. The dots between two

circles indicate inner product, i.e. contraction of the R
4 indices.

We need to sum over all possible pairings of indices; we’ve have drawn one such pairing

into the figure, showing with the looping lines which indices form pairs. We also need to

keep track of the R
4 index structure; by following the lines and the inner products in

figure 1, we see that the ‘strings’ created by these lines come in two varieties: ‘closed’ and

‘open’. By closed we mean any loop such as the one connecting the left four d’s in the

figure, while open loops always end in e’s (empty circles) on both ends. Thus there is one

closed and two open loops in the figure.

Next we need to see how these loops contribute; this is easiest to do by considering the

example in the figure and computing the contribution from the closed loop and the middle

(open) loop. Due to the factorization these can be computed separately, and we get

{

Closed (left): I[(~dk1 · ~dl1)(
~d−l1 · ~d−k1)] =

∑4
a,b=1 Na

k1
N b

l1
δab = 4Nk1Nl1,

Open (middle): I[(~dk3 · ~dl3)(~e · ~d−l3)(~e · ~d−k3)] =
∑4

a=1 Na
k3

Na
l3
e2
a = Nk3Nl3 ,

(A.4)

from which we see that closed loops get a factor of 4 from the index structure, while open

ones get ~e 2, which is unity. (Note that we are always dealing with the case where the

occupation numbers don’t depend on direction, i.e. Na
k = Nk.) Now we are ready to deal

with all the cases where no two pairs coincide.

The case where two or more pairs coincide is very similar; the only real difference is

the the number of terms we expect. Let us assume we have n pairs, two of which coincide,

i.e. qi = qj for some i and j. In this case the total number of terms is (2n)!
(n−2)!2!2! , where

(2n)!
2!2! is the total number of terms9. We again divide by (n − 2)! to make sure the qk are

unordered. More complicated cases can also be worked out similarly.

9For example, when no pairs coincided, the term dqi
dqj

could come from k1 = qi and k2 = qj , or k1 = qj

and k2 = qi. Now that qi = qj there is only one term, k1 = k2 = qi = qj ; thus we need to divide by the

degeneracies.
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p=0: (a) (b)

p=1: (a) (b) (c)

p=2: (a) (b) (c)

Figure 2: All possible ‘topologically’ distinct pairings for n = 2. The dashes lines above the dots

indicate that the dots connected by these lines share the same index (up to sign).

A.1 The n = 2 case explicitly

To illustrate the method explained above, we shall now work out the case n = 2 in some

detail10. We see from (A.1) that we need to compute

4
∑

m1,...,m4

δ(. . .)
√

|m1m2m3m4|
I[(~e · ~dm1)(~e · ~dm2)(~e · ~dm3)(~e · ~dm4)]

−3
∑

k,l,m1,m2

δ(. . .)
√

|klm1m2|
I[(~dk · ~dl)(~e · ~dm1)(~e · ~dm2)]

+
1

4

∑

k1,k2,l1,l2

δ(. . .)
√

|k1k2l1l2|
I[(~dk1 · ~dl1)(

~dk2 · ~dl2)],

where the terms correspond to p = 0, 1, 2 respectively. We’ll compute each term separately;

all the possible ‘topologically’ different pairings are drawn in figure 2, and we’ll refer to

them in the equations as ( p = 0 : (a) ) etc.

The p = 0 term: this is the easiest term and readily gives

4
{

( p = 0 : (a) ) · 3 · 22 + ( p = 0 : (b) ) · 6
}

= 4







12
∑

6=

1

m1m2
Na

m1
N b

m2
e2
ae

2
b + 6

∑ 1

m2
Na

mN b
me2

ae
2
b







= 4

{

12(
∑ Nm

m
)2 − 6

∑ N2
m

m2

}

= 48M2
1 − 24M2. (A.5)

This requires some explanation. The sums are over all indices ({ki, li,mj}) present and run

from 1 to infinity, and
∑

6= is shorthand for
∑

m1 6=m2
. Sums over the R

4 indices are also

10The n = 1 case, which turns out to vanish, is too simple and does not illustrate the method particularly

well.
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present, though we’ve suppressed them. The degeneracies on the first line are as follows:

3 is due to m1 being able to pair up with any of the three other indices, and 22 is due

to there being two pairs, in each of which the positive index can be chosen in two ways.

In the second term, 6 =
(4
2

)

is the number of ways two of the four indices can be chosen

to be positive. Also note that these degeneracies coincide with the number of terms as

given earlier, namely 12 = 4!
2! and 6 = 4!

2!2! . Checking that this is always satisfied is a

vital consistency check to make sure the degeneracies are taken into account correctly. We

should also point out that from the formalism above it is clear that the answer can always

be given as a sum of the multipoles, such that the powers are correct, for instance M2 or

M2
1 here.

The p = 1 term: for the remaining terms, we only give the beginning and the end of the

computation; using (A.4) it is straightforward to fill in the missing steps. The p = 1 term

gives

−3 {( p = 1 : (a) ) · 4 + ( p = 1 : (b) ) · 2 · 4 + ( p = 1 : (c) ) · 6} = −72M2
1 + 18M2,

(A.6)

where we again check that the degeneracies are correct: 4 + 2 · 4 = 12 and 6, which is

correct.

The p = 2 term: finally, for p = 2 we get

1

4
{( p = 2 : (a) ) · 4 + ( p = 2 : (b) ) · 2 · 4 + ( p = 2 : (c) ) · 6} = 24M2

1 − 6M2, (A.7)

where again the degeneracies match.

Putting these results together we get that the 1
r6 term in the asymptotic expansion of

the metric is −12Q5µ4

r6 M2, as given in (3.5). Note that the M2
1 terms cancel, leaving only

M2. At the n = 3 level, one can show that the M3
1 and M1M2 terms cancel, leaving only

the M3 term. It is tempting to conjecture that this cancellation always happens, but we’ve

been unable to show this. Nevertheless, the arguments of this paper are not sensitive to

whether terms like Mk
1 etc. are present at level k along with the Mk term.

B. Expansion of f1

For completeness we will also compute the asymptotic form of the f1 function (2.25). Since

f1 differs from f5 only by inclusion of an |~F ′(s)|2 term, we can follow the same recipe as

for f5, and we find

f1 = 1 +
Q5

r2

2π2µ2

L2

∞
∑

n=0

(µ

r

)2n
n

∑

p=0

(−1)p+12n−2p

(

2n − p

p

)

×

×
∑

k1,...,kp+1
l1,...,lp+1

m1,...,m2(n−p)

δ

(

∑

i

(ki + li) +
∑

j

mj

)

kp+1lp+1
√

|∏i kili
∏

j mj |
N ×

×
∫

~d

∞
∏

k=1

4
∏

a=1

e−da
kda∗

k (da
kd

a∗
k )N

a
k

p+1
∏

i=1

(

~dki
· ~dli

)

2(n−p)
∏

j=1

(

~e · ~dmj

)

. (B.1)
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The difference to the expansion of f5 is the inclusion of a factor −2π2µ2

L2 kp+1lp+1
~dkp+1 · ~dlp+1 .

Note that using equations (2.10), (2.12) and (2.13), we can write Q5
2π2µ2

L2 = Q1

2N .

The n = 0 term: the first term is given by

−Q1

r2

1

2N

∑

k,l

δ(k + l)
kl

√

|kl|
I[(~dk · ~dl)] =

Q1

r2

1

2N
· 2

∞
∑

k=1

4
∑

a=1

kNa
k =

Q1

r2
, (B.2)

which is of course the expected result.

The n = 1 term: at the n = 1 level we have two terms: p = 0, 1. The first one yields

−Q1µ
2

r4

1

2N
2

∑

k,l,m1,m2

δ(k + l + m1 + m2)
kl

√

|klm1m2|
I[(~dk · ~dl)(~e · ~dm1)(~e · ~dm2)], (B.3)

and we see that the possible pairings are just those from the second row of figure (2).

However, the pairing (b) does not contribute in this case; the reason is that if k and l are

independent the sums will yield zero as the summand is odd in both k and l. Thus k and

l will always have to be linked to produce a contribution. Thus we get

−Q1µ
2

r4

1

N
(( (a) ) · 4 + ( (c) ) · 2)

= −Q1µ
2

r4

1

N



−4
∑

k 6=m

k

m
Na

k N b
me2

b − 4

∞
∑

k=1

k

k
Na

k N b
ke2

b + 2

∞
∑

k=1

k

k
Na

k Na
k e2

a





=
Q1µ

2

r4

1

N



4
∑

k,m

k

m
NkNm − 2

∞
∑

k=1

k

k
Na

k Na
k e2

a





=
Q1µ

2

r4

(

4M1 −
2

N

∞
∑

k=1

N2
k

)

. (B.4)

For the p = 1 term we see that the possible pairings are given on the third line of figure 2,

except that (b) again does not contribute, for the same reason as stated above. The

computation proceeds as above and after some algebra we get

Q1µ
2

r4

1

2N

1

2
(( (a) ) · 4 + ( (c) ) · 6) = . . . =

Q1µ
2

r4

(

−4M1 +
2

N

∞
∑

k=1

N2
k

)

. (B.5)

Thus we see that the p = 0 and p = 1 terms cancel, and at level n = 1 there is no

contribution, which is exactly what happened for the f5 expansion as well.

The n = 2 term: finally, we can also compute the n = 2 term. Here the combinatorics

are already somewhat complicated, so we won’t present the computation. However, in the

end we can write the expansion to order 1
r6 as

f1 = 1 +
Q1

r2
− Q1µ

4

r6

(

12M2 −
16

N

∞
∑

k=1

N3
k

k

)

+ O(
1

r8
). (B.6)
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Again we see that terms with M1 have cancelled, leaving only M2. However, now we

also have a term of the form
∑∞

k=1 N3
k /k, which is not one of the multipoles we have

defined. Furthermore, from the formalism we see that the new objects that can appear are

of the form
∑

k Nn
k /kn−2, where the mismatch in powers is due to the factor kp+1lp+1 that

came from including |~F ′(s)|2. In principle we should make sure that these quantities don’t

fluctuate too much either, but due to their great similarity to the multipoles, it is clear

that if we fix the multipoles with accuracies ǫk, then these new objects will also be fixed

by some set of frequencies ǫ′k. Thus we shall not worry about these objects in this paper.
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